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Motivation

Valve Seat Assembly Forging Semiconductor . Rolling

o

. 3

-

¢

Station 1 Station 2 Station 3 Station 4 Station 5
Preforming ~ Blacker Finigher Plercing Trimming

: . : . .
ok 4 w0
3000 .
L L L L L 20
2500 s 20 o o %0 oo 200
—
. . . . . 2
g s L~
%0
a] = 0
1500 . . . . .
m 0 200 400 600 800 1000 1200 %0
D o0 o . . . . .
O IR e N R
O 500 E ° o
u_ O 0 200 400 600 800 1000 1200
0 - . . . . . 80
DW
0,20 40 0 80 100 120 140 o %
0 200 400 600 800 1000 1200

Time of each operation cycle

Crank angle (degree)

2 Anomaly Detection in HD Data has wide applications in different domains. Gr grggffia



Common Methods for Anomaly Detection in HDD

« SPC-based Methods (ST-SSD and Stochastic Textured Surface)
« Do notrequire large training data, but they cannot deal with complicated patterns.
 Application specific and need to be modified for each application.

« Low-rank Decomposition Methods (e.g., RPCA [1] and SSD [2])
» Do notrequire large training data, but they cannot deal with complicated patterns.
« Low-rank (linear projection to LD space) or smoothness assumptions may not be valid.
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Common Methods for Anomaly Detection in HDD

» Deep Learning Approaches
* Needs large datasets to train
* In some cases, labeled data can be very expensive to collect

« Generative Al Approaches (e.g., VAE, GAN, DDPM)
» Needs large datasets to train, otherwise overfits very easily
« GANSs are often unstable
« DDPM Reconstruction-based methods cannot detect subtle defects
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Review: Denoising Diffusion Probabilistic Models (DDPM [6])

* In DDPM:
* Noise is added in a predefined Markovian chain to turn the data into pure Gaussian noise

« Backward conditional distribution is learned as a Gaussian distribution based on MLE using neural
networks.
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DDPM Training Algorithm [6]

Denoising Diffusion Probabilistic Models (DDPM) using noise prediction models
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In each training iteration:

« Sample a data point, a time step in forward diffusion process (T is usually 1000) and a Gaussian noise and
construct the noised data based on forward diffusion process

« Apply gradient descent algorithm on the L2 norm of noise prediction error

The architecture used is usually UNet an autoencoder with skip connections
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Anomaly detection with DDPM [7] .
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* First training DDPM on healthy data with 1000 steps in %
forward diffusion 5

« For a new image we noise image to 1 steps (250
chosen)

Gaussian

« Apply sampling algorithm from noisy image to step 0
and get the corresponding healthy data point

 Find the difference between the original image and the
reconstructed one.

» Reconstruction-based anomaly detection

Anomalies

» Needs large amount of healthy data

» Reconstruction-based method does not work for very
subtle defects

« Cannot reconstruct well when random patterns exist
like bright points

Georgia
Gl" Tech.



Anomaly detection with DDPM [7]

Simplex

* First training DDPM on healthy data with 1000 steps in
forward diffusion

« For a new image we noise image to 1 steps (250
chosen)

Gaussian

« Apply sampling algorithm from noisy image to step 0
and get the corresponding healthy data point

Anomalies

» Find the residuals between the original image and the
reconstructed one.

» Reconstruction-based anomaly detection

Drawbacks:

» Needs large amount of healthy data
 Reconstruction-based method does not work for
subtle defects

Anomalous image Noised image

Iterative denoising using DDPM

Residual This is only 25
Reconstructed image steps



In-Control Data

I Controt ta

Proposed RADAR [12] giss

 Diffusion modelis trained to predict the Gaussian noise -
added to the sampled image |

E Tty

* In control image: approximately Gaussian prediction:

e Qut of control: different distribution than Gaussian

—Residual Connectionsy»

 RADAR
- Divide the image into patches and learn the O 1 Contl ot “
distribution by diffusion models. iy --oooo oo e
« Significantly increases the training size
o A 255*255 image turns into 228*228 patches
of 28*28 images
o Prevents memorization and overfitting

o Reduces computational burden

 Ininference, noise patches in 1 step forward
diffusion are predicted

« Apply a combination of edge detection and norm-
° based feature extraction to extract features

Trained U-Net
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Feature Extraction and One-class Classification

« Apply a Gaussian blur to smooth the image (kernel_size=5)

« Apply a Sobel edge detection (kernel_size=5) and extract the total L2 norm + max of L2 norm for windows
with size 20 sliding 20 times in x and y axis

» For each image extract both max_L2 and L2 as two features for SPC

« Apply LOF one-class classification algorithm for anomaly detection
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Case Study

 Dataset:

« LPBF Additive Manufacturing Dataset (different process
parameters and scan strategies)

 MVTec-AD anomaly detection dataset: tile category

« Benchmarks:

« State of the art diffusion models: AnoDDPM [7],
DiffusionAD [9]

- Statistical machine learning models: C&B [8], B&A [3]

* Metrics:
 accuracy, precision, recall, F1 score
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Extrusion-Based Additive Manufacturing [8]

Phase 1 data (training): 81
» 45 degrees orientation: 41
» 135 degrees orientation: 40

Phase 2 data (validation and testing): 84

» 45 degrees in control: 21

» 45 degrees out of control: 22
e 135in control: 19 In control data 45 Out of control data 135  Out of control data

d 45
e 135 out of control: 22 egrees

Current State of the art: they have one model for each pattern
« (Caltanissetta, Bertoli, & Colosimo) [8]
« (Bui & Apley) [3]

We train a single model for both angles
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Visual Results (Precise Pixel-Level Segmentation and Image
Level Anomaly Detection with Single Model)

Phase2 images

Predicted noise
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Results LPBF Case Study

Accuracy 0.73
Precision 0.77

Recall 0.68
F1 score 0.72
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Tile Case Study

0.64

Accuracy 0.35 0.47

Precision 1.0 0.87 0.58 0.63 0.59 0.95
Recall 0.07 0.35 0.20 0.57 0.57 0.51
F1 Score 0.13 0.50 0.30 0.60 0.58 0.67
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In addition to image level anomaly detection, RADAR shows good pixel level anomaly detection for diagnosis

Edge Detection for 'tile_gray_stroke_012.png' Edge Detection for 'tile_crack_012.png'
Ground Truth

Edge Heatmap

Ground Truth

Edge Heatmap

v

Edge Detection for 'tile_gray_stroke_011.png' Edge Detection for 'tile_crack_006.png'

Ground Truth Edge Heatmap Ground Truth Edge Heatmap
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Ablation Study: Feature Extraction (Contamination=0.05) on
the Second Case Study

Current Hough
method Transform

Accuracy 0.64 0.55 0.59 0.34 0.39
Precision 0.95 0.88 0.94 0.80 0.74
Recall 0.51 0.41 0.43 0.05 0.19
F1 Score 0.67 0.56 0.59 0.10 0.30
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Conclusion

« Generative models show exceptional performance in anomaly detection and segmentation.
« Current state-of-the-art methods require healthy training data to be effective.
« Anomalies are localized by reconstructing a normal version of the image through hundreds of sampling
steps in the backward diffusion process, followed by residual calculation.
* Our Contributions:
« RADAR: Performs diffusion-based anomaly detection and segmentation in a single step, unlike
reconstruction-based models that require hundreds of steps.
* Future Work:
» Extend the current methods to non-stationary time-series monitoring and anomaly detection:
« Condition training on past windows to enforce temporal relationship learning.
 Incorporate a prediction loss to encourage the model to forecast future points.
» Extend the model to unstructured point-cloud monitoring and anomaly detection:
 Define patches as neighborhoods of points and train the model to learn their distribution.
» Develop new feature extraction modules for more precise anomaly localization.
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On the Job Market - Open to Research
& ML Opportunities

« Mehrdad Moradi
» Focused on robust generative Al for anomaly detection and vision systems
* Ph.D. Student in Machine Learning, Georgia Tech
 Advisor: Prof. Kamran Paynabar
» Research focus: Anomaly Detection, Diffusion Models

Connect on Linkedin

» Selected Publications

« Moradi, M., Chen, S,, Yan, H., Paynabar, K. A Single Image Is All You Need: Zero-Shot Anomaly
Localization Without Training Data. (Submitted to WACV 2026) [9]

« Moradi, M., Grasso, M., Colosimo, B. M., Paynabar, K. Single-Step Reconstruction-Free Anomaly
Detection and Segmentation via Diffusion Models. (ICMLA 2025) [7]

» Moradi, M., Paynabar, K. RDDPM: Robust Denoising Diffusion Probabilistic Model for Unsupervised
Anomaly Segmentation. (ICCVW 2025) [8]

» Opportunities

« Actively seeking Machine Learning research or applied roles (internship or full-time) starting in Spring,
Summier, or Fall 2026.

« Contact:
« Email: mmoradié@gatech.edu Georgia
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