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Anomaly Detection in HD Data has wide applications in different domains. We aim to detect 
subtle defects across heterogeneous high-dimensional signals and textures.
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Classical statistical methods rely on 
restrictive assumptions

• RPCA [1]: relies on a low-rank 
assumption on the background and 
sparsity of the anomaly

• SSD [2]: relies on the smoothness of 
the normal background and the 
sparsity of the anomaly

• However, they fail on complex, high-
dimensional data.

Deep generative approaches rely on 
supervised assumptions:

• Reconstruction-based (VAE [10], GAN 
[11], Diffusion [6]) anomaly detection 
needs healthy data for training

Research gap
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We propose Robust DDPMs:
• Do not assume low rank (linear LD 

space)
• Do not need healthy training data
• The only assumption is that the 

probability of having an anomalous 
sample is the training data is 
significantly lower than in healthy data 
(i.e., outliers)

Low-rank 
matrix 
decomposition

Deep 
generative 
models

Robust Diffusion



• Let {𝑑1, 𝑑2, … , 𝑑𝑛} be the set of training observations coming from an unknown distribution 𝑃𝐷(𝑑)

• 𝑃 has two modes: 𝑚1, 𝑚2 corresponding to normal and anomaly, respectively.

• Our objective is to decompose the new anomalous image into normal and anomalous component

• 𝑌 = 𝑛 + 𝑎 s. t.  n ∼ 𝑃𝑚1
:  normal mode of the distribution

•  𝑛 ∼ 𝑝 𝑥0 𝑥𝑡0
, 𝑡0 < 𝑇, 𝑥𝑡0

∼ 𝑞 𝑥𝑡0
𝑦

• 𝑞 𝑥𝑡0
𝑦 : predefined forward conditional distribution

• 𝑝 𝑥0 𝑥𝑡0
: learned backward conditional distribution

• 𝑇: number of diffusion timesteps

Problem Formulation 
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Two-mode data distribution assumption



Huber                            vs               MSE loss

𝑎, 𝛿: model residual, hyperparameter controlling robustness

𝐿 𝑎 = 𝑎2

𝑎, 𝛿: model residual
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Huber offers resilience to outliers — a key advantage for contaminated data



• We use Huber loss to make DDPM robust against outliers and propose a new training algorithm.

• We add noise through 100 forward diffusion steps and denoise for 250 steps to reconstruct the healthy image.

• This pipeline allows training directly on contaminated datasets.

Proposed Robust Diffusion Model
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Robust Diffusion Training Algorithms
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RDDPM-LTS RDDPM-Huber

• RDDPM-Huber: trained with Huber loss penalizing larger residuals 
with L1 norm

• RDDPM-LTS: using least trimmed squares loss, keeping the top s 
samples with the lowest residuals

• We use RDDPM-Huber in our experiments because it performed 
better empirically



• Trained on 20% contamination, reconstructions 
by RDDPM are cleaner than DDPM.

• RDDPM outperforms other diffusion models on 
Carpet, Grid, and the entire MVTec-AD [3] dataset. 

Results

Carpet AUROC AUPRC MSE

RDDPM 0.5673 0.0362 0.1246

AnoDDPM [5] 0.4650 0.0234 0.2115

DiffusionAD [6] 0.4909 0.0268 0.1199

Grid AUROC AUPRC MSE

RDDPM 0.6373 0.1803 0.0896

AnoDDPM 0.4734 0.0121 0.2188

DiffusionAD 0.5565 0.0766 0.0863
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MVTec-AD AUROC-ID AUROC-OOD

RDDPM 0.78 0.71

DDPM 0.76 0.69

Anomalous

DDPM

RDDPM

Grid Carpet Bottle



Sensitivity Analysis: 
Contamination 
Level

• RDDPM outperforms other 
methods across different 
contamination levels.

• In zero contamination, it shows a 
better performance in AUROC and 
AUPRC.

• RDDPM maintains stable 
performance even under high 
contamination.
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Robustness Parameter

• When δ = 0 → equivalent to L1 norm (poor performance)

• When δ →∞ → equivalent to L2 norm (DDPM formulation)

• Overall, performance is largely insensitive to δ variations.
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• Generative diffusion models are highly effective for anomaly detection and segmentation.

• However, most existing approaches rely on clean training data, which is unrealistic in real-world industrial 
settings.

• Our proposed RDDPM relaxes this assumption, performing robustly on contaminated data while maintaining 
strong detection accuracy.

• Future research:

• Extending RDDPM to unstructured point-cloud data for 3D anomaly detection.

• Adapting RDDPM to non-stationary time-series signals for temporal anomaly detection.

• Generalizing the framework to an extensive family of robust loss functions, forming a family of Robust 
Diffusion Models.

Conclusion & Future Directions
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Thank you! Questions are welcome.



On the Job Market - Open to Research 
& ML Opportunities
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