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Motivation
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. Anomaly Detection in HD Data has wide applications in different domains. We aim to deteCGr Georgia
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subtle defects across heterogeneous high-dimensional signals and textures.



Research gap

Classical statistical methods rely on
restrictive assumptions
« RPCA [1]: relies on a low-rank
assumption on the background and
sparsity of the anomaly

 SSD [2]: relies on the smoothness of
the normal background and the
sparsity of the anomaly

» However, they fail on complex, high-
dimensional data.

Deep generative approaches rely on
supervised assumptions:

 Reconstruction-based (VAE [10], GAN
[11], Diffusion [6]) anomaly detection
needs healthy data for training

We propose Robust DDPMs:

« Do not assume low rank (linear LD
space)

« Do not need healthy training data

« The only assumption is that the
probability of having an anomalous
sample is the training data is
significantly lower than in healthy data
(i.e., outliers)

Robust Diffusion

Low-rank

tri Deep
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Problem Formulation

Let {d,,d,, ..., d,,} be the set of training observations coming from an unknown distribution P (d)

P has two modes: m1, m2 corresponding to normal and anomaly, respectively.

Our objective is to decompose the new anomalous image into normal and anomalous component

Y=n+a s.t.n~ Py : normal mode of the distribution

n ~ p(xo|xe, ), to < T xe, ~ (e, |) Ry(d)

q(x¢,|v): predefined forward conditional distribution

p(xo|x¢, ): learned backward conditional distribution

T: number of diffusion timesteps

my m;
normal anomaly

d

Two-mode data distribution assumption
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Huber VS MSE loss

Ls(a) %az for |a| <9,
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Huber offers resilience to outliers — a key advantage for contaminated data
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Proposed Robust Diffusion Model

* We use Huber loss to make DDPM robust against outliers and propose a new training algorithm.

« We add noise through 100 forward diffusion steps and denoise for 250 steps to reconstruct the healthy image.

» This pipeline allows training directly on contaminated datasets.
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Robust Diffusion Training Algorithms

RDDPM-Huber: trained with Huber loss penalizing larger residuals
with LT norm

RDDPM-LTS: using least trimmed squares loss, keeping the top s
samples with the lowest residuals

We use RDDPM-Huber in our experiments because it performed
better empirically

RDDPM-LTS RDDPM-Huber

while Not converged do

xo ~ q(mo) while Not converged do

t ~ Uniform({1,..., T} zo ~ q(zo)

e~N(0,I) t ~ Uniform({1,..., T})

Take gradient descent step on e ~N(0,I)

y Take gradient descent step on
VoLTS(|le —€ o + V1 — age, t
’ (H ’ (\/_t ’ t )“ ) V¢ Huber;s (E—Eg (\/ﬁTtmg+\/1 —c_xte,t))
s=AxB

2
= Z Va Hei — €9 (,/&timoi + 41— ﬁftieé,ti)H
i=1

Where s € {1,...,B} and X € (0,1]
end while

ir? if |[r] <96

here Hube =
where Huber;(r) {5 (Jr] — 36) if|r| > 6

end while
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Results

e Trained on 20% contamination, reconstructions
by RDDPM are cleaner than DDPM.

« RDDPM outperforms other diffusion models on Anomalous
Carpet, Grid, and the entire MVTec-AD [3] dataset.

Carpet | AUROC |AUPRC __|MSE____

Bottle

RDDPM 0.5673 0.0362 0.1246

AnoDDPM [5]  0.4650 0.0234 0.2115

DiffusionAD [6] 0.4909 0.0268 0.1199 PDPM
Grid  |AUROC [AUPRC  [MSE

RDDPM 0.6373 0.1803 0.0896

AnoDDPM 0.4734  0.0121 0.2188

DiffusionAD  0.5565 0.0766 0.0863 RDDPM

RDDPM 0.78 0.71

DDPM 0.76 0.69



Sensitivity Analysis:
Contamination
Level

« RDDPM outperforms other
methods across different
contamination levels.

* In zero contamination, it shows a
better performance in AUROC and
AUPRC.

« RDDPM maintains stable
performance even under high
contamination.
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Robustnhess Parameter

When 6 = 0 — equivalent to L7 norm (poor performance)
When 6 — oo — equivalent to L2 norm (DDPM formulation)

Overall, performance is largely insensitive to 6 variations.

Sensitivity Analysis of &6 on RDDPM Performance
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Conclusion & Future Directions

« Generative diffusion models are highly effective for anomaly detection and segmentation.

« However, most existing approaches rely on clean training data, which is unrealistic in real-world industrial
settings.

« Our proposed RDDPM relaxes this assumption, performing robustly on contaminated data while maintaining
strong detection accuracy.

* Future research:
» Extending RDDPM to unstructured point-cloud data for 3D anomaly detection.

« Adapting RDDPM to non-stationary time-series signals for temporal anomaly detection.

» Generalizing the framework to an extensive family of robust loss functions, forming a family of Robust
Diffusion Models.

Thank you! Questions are welcome.
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On the Job Market - Open to Research
& ML Opportunities

« Mehrdad Moradi
» Focused on robust generative Al for anomaly detection and vision systems
* Ph.D. Student in Machine Learning, Georgia Tech
 Advisor: Prof. Kamran Paynabar
» Research focus: Anomaly Detection, Diffusion Models

Connect on Linkedin

» Selected Publications

« Moradi, M., Chen, S,, Yan, H., Paynabar, K. A Single Image Is All You Need: Zero-Shot Anomaly
Localization Without Training Data. (Submitted to WACV 2026) [9]

« Moradi, M., Grasso, M., Colosimo, B. M., Paynabar, K. Single-Step Reconstruction-Free Anomaly
Detection and Segmentation via Diffusion Models. (ICMLA 2025) [7]

» Moradi, M., Paynabar, K. RDDPM: Robust Denoising Diffusion Probabilistic Model for Unsupervised
Anomaly Segmentation. (ICCVW 2025) [8]

» Opportunities

« Actively seeking Machine Learning research or applied roles (internship or full-time) starting in Spring,
Summier, or Fall 2026.

« Contact:
« Email: mmoradié@gatech.edu Georgia
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